
Auto-complete NLQ and Convert to SQL
FIGHT ON ! – Sneha Kedia, Supraja Krovvidi, Priyanshi Agrawal, Laxmi Garde, Priya Bannur

Description Method Discussion

Conclusion

Input Unfinished NLQ

Auto-complete module
• Data Cleaning
• TF-IDF Matrix
• Cosine Similarity

Processed NLQ

NLQ to SQL convertor

Recommender system
• Random selection
• Based on user history

Final NLQ

Placeholder?

SQL query

RDBMS

Decision Tree for 
combination of POS 

Tagging + Bigram model

Pass?

Y

N

Y

N

Fine-tuned BERT

Table-column pair 
prediction

Table linking using BFS 
shortest path

NLQ to SQL convertor

Named Entity Recognition 
and Condition Prediction 
(NER + fine-tuned BERT)

Dataset

Created domain specific dataset 
using the ACL-Anthology dataset 
(Singh et al. 2018).
▪ Generated 300+ unique 

single-table, multi-table NLQs.
▪ Paraphrased NLQs to SQL 

queries.
▪ Augmented SQL queries 

(replaced placeholders) to 
create 3000+ queries.

▪ Annotated SQLs manually, 
used a semi-automated script 
for checking SQL table 
references.

A system to predict SQL queries 
from incomplete NLQs by using 
auto-completion and BERT based 
conversion module for RDBMS.

Example

Results

86.67%

96.67%
93.40%

▪ Zero Result Rate = 0.29% 

▪ Exact Match: % of test set in 
which predicted SQL query is 
same as actual.

▪ Semantic Match: % of test set 
in which output of predicted 
and actual SQL query is same, 
though the queries might be 
different.

▪ Query Distance: Closeness of 
match based on no. of edges 
between the given columns in 
BFS tree. (QD = 1.132)

In comparison to existing 
architectures, our approach is 
customized for a specific database 
and hence giving good accuracy.
Our model cannot predict complex 
queries with clauses like AND, 
HAVING, ORDER By and nested 
queries beyond 5 table linkages.

▪ Baseline NLQ-SQL model: 
SyntaxSQLNet, a syntax tree 
model for cross-domain tasks.

▪ Unlike baseline model, we 
encoded the relational schema 
(natural numbers mapping) 
and embedded it as a part of 
model.

▪ Flexibility for implementation 
on databases with varied 
schemas and can be fine-tuned 
for accurate results.

FIGHT ON ! – CSCI 544 @USC 


